Prediction of the thermophysical properties of pure neon, pure argon, and the binary mixtures neon-argon and argon-krypton by Monte Carlo simulation using ab initio potentials.

نویسندگان

  • A E Nasrabad
  • R Laghaei
  • U K Deiters
چکیده

Gibbs ensemble Monte Carlo simulations were used to test the ability of intermolecular pair potentials derived ab initio from quantum mechanical principles, enhanced by Axilrod-Teller triple-dipole interactions, to predict the vapor-liquid phase equilibria of pure neon, pure argon, and the binary mixtures neon-argon and argon-krypton. The interaction potentials for Ne-Ne, Ar-Ar, Kr-Kr, and Ne-Ar were taken from literature; for Ar-Kr a different potential has been developed. In all cases the quantum mechanical calculations had been carried out with the coupled-cluster approach [CCSD(T) level of theory] and with correlation consistent basis sets; furthermore an extrapolation scheme had been applied to obtain the basis set limit of the interaction energies. The ab initio pair potentials as well as the thermodynamic data based on them are found to be in excellent agreement with experimental data; the only exception is neon. It is shown, however, that in this case the deviations can be quantitatively explained by quantum effects. The interaction potentials that have been developed permit quantitative predictions of high-pressure phase equilibria of noble-gas mixtures.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self Diffusion and Binary Maxwell-Stefan Diffusion in Simple Fluids with the Green-Kubo Method

Self diffusion coefficients and binary Maxwell-Stefan diffusion coefficients were determined by equilibrium molecular dynamics simulations with the Green-Kubo method. The study covers five pure fluids: neon, argon, krypton, xenon, and methane and three binary mixtures: argon+krypton, argon+xenon, and krypton+xenon. The fluids are modeled by spherical Lennard-Jones pair-potentials, with paramete...

متن کامل

The role of carrier gases in the production of metastable argon atoms in a rf discharge.

We investigate the role of carrier gases in the production of metastable argon atoms in a rf-driven discharge. The effects of different carrier gases (krypton, xenon, neon, and helium), carrier gas pressures, and rf discharge powers are examined. A xenon carrier gas provides the greatest metastable population of argon, yielding an optimal fractional metastable population of argon (Ar(*)/Ar) of ...

متن کامل

Antiapoptotic activity of argon and xenon

Although chemically non-reactive, inert noble gases may influence multiple physiological and pathological processes via hitherto uncharacterized physical effects. Here we report a cell-based detection system for assessing the effects of pre-defined gas mixtures on the induction of apoptotic cell death. In this setting, the conventional atmosphere for cell culture was substituted with gas combin...

متن کامل

PARTICLE IDENTIFICATION BY dg/dx SAMPLING IN NEON

Systematic studies of identification efficiency for e/n/p were performed in a variety of noble gas mixtures and in pure hydrocarbons at pressures up to 5 atm using a 15 GeV/c tagged beam. Neon mixtures were found to give the best results (6.7 (I n/p separation at 1 atm). Replacing the conventionally used argon by neon would permit a reduction of detector depth by almost a factor of two. The mea...

متن کامل

A molecular simulation study of shear and bulk viscosity and thermal conductivity of simple real fluids

Shear and bulk viscosity and thermal conductivity for argon, krypton, xenon, and methane and the binary mixtures argon+krypton and argon+methane were determined by equilibrium molecular dynamics with the Green-Kubo method. The fluids were modeled by spherical Lennard-Jones pair-potentials with parameters adjusted to experimental vapor liquid-equilibria data alone. Good agreement between the pre...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of chemical physics

دوره 121 13  شماره 

صفحات  -

تاریخ انتشار 2004